We use cookies to ensure the best possible experience on our site. By continuing to use it, we consider that you accept their use. more information

COVID 19 – We remain open & fully operational – For more info

fr en

X-Ray inspection for Composite Materials & Fibers

X-Ray inspection for Composite Materials & Fibers

Over the years, X-Ray microtomography has become an essential tool for non-invasive & non-destructive characterization of materials in three-dimensions. Industrial computed tomography, also known as CT scanning, is able to simply and easily characterize material structure of a composite components. CT precisely defines each specimen, in its entirety, down to individual fibers composing the mass. Every structural and dimensional aspect of composite parts can be assessed through a single CT dataset.

In the field of polymers, CT technology is particularly valuable defining material constituents and linking microstructure with resulting physical properties.

Recent developments facilitate sub-micron resolution in laboratory instruments: RX Solutions CT systems can work at resolutions as small as 0.3 µm/voxel (resolution measured on JIMA resolution target) with an image quality resembling that of Synchrotron acquisitions.

The quality of a high-resolution acquisition will depend on several parameters including an understanding of polymer sensitivity to X-radiation, to sufficiently contrast phases, and to acquire appropriate resolution which is defined by requirements of the analysis.

High resolution CT acquisitions require high stability of the X-Ray source focal spot but also a high stability of the sample. Lightweight materials can be sensitive to X-radiation thus  a deformation can occur over the course of a scan. RX Solutions software X-Act, for the acquisition and reconstruction of tomographic data, can program timing sequences to control these adverse effects.

High resolution inspection of composite materials is a powerful tool to reveal, in a non-destructive manner, fiber orientation and distribution. After a specimen has been acquired and reconstructed, materials can be segmented by interpreting grayscale differential.This is related to density change within the composite sample.It’s important to ensure that contrast is sufficient, to separate material constituents, with available 16bits (65,535 values) of information.

In tomography, two things need to be kept under consideration: sample size and field of view. Both are linked. Sample size plays a role in the quantity of signal transmitted which, in turn, affects image quality. The larger the sample, the longer the scan time to maintain signal/noise ratio. Field of view is dependent on geometric resolution (or voxel size) and therefore, when a sample is larger than the field of view (at high-resolution), the acquisition could be performed on a region of interest (ROI) instead of the overall sample.

RX Solutions CT systems are designed to investigate a variety of parts and materials thanks to multiple acquisition modes such as “helical” or “stack”. Through innovative design and flexible source/detector positioning, it is possible for RX Solutions systems to increase the field of view, either horizontally or vertically, by moving the detector. Both micro and submicron scale acquisitions can be performed within the same system using automated sample alignment.

RX Solutions CT systems are tomographic solutions that can be used for a variety of 3D applications ranging from research and material sciences to industrial applications in R&D and production. Scalable CT hardware integrated with full featured “X-Act” software, a proprietary offering, streamlines acquisition, reconstruction, and is enhanced by advanced corrective algorithms;capable of automated workflow: scanning, reconstruction, and inspection.